
 1

MULTI-AGENT PLANNING AND SCHEDULING ENVIRONMENT FOR
ENHANCED SPACECRAFT AUTONOMY

Subrata Das and Paul Gonsalves
Charles River Analytics, Inc.

725 Concord Ave., Cambridge, MA 02138, USA
phone: +1 617 491 3474, fax: +1 617 868 0780, e-mail: {sdas,pgonsalves}@cra.com

Raffi Krikorian
MIT Media Laboratory

20 Ames Street, Cambridge, MA 02139, USA
raffik@mit.edu

Walt Truszkowski
NASA Goddard Space Flight Center
Code 588, Greenbelt, MD 20771, USA

Walt.Truszkowski@gsfc.nasa.gov

ABSTRACT
Spacecraft autonomy has the potential for effecting

significant cost savings in mission operations by reducing
the need for dedicated ground staff. In an autonomous
operating mode, operators will communicate only high-
level goals and deadlines directly to the spacecraft. The
spacecraft will then perform its own planning and
scheduling, decomposing a goal into a set of sub-goals to
be achieved with onboard subsystems and/or in
cooperation with other spacecraft in the environment. In
this paper, we present this distributed (or equivalently,
multi-agent) approach to onboard planning and
scheduling that helps a spacecraft function as an
autonomous agent. Such an agent’s domain knowledge of
tasks and their components is manifested through a
hierarchical language taking into account spacecraft
operational aspects and resource constraints. The task
decentralization problem is solved by the use of the
hierarchical knowledge structures, and the resource
optimization problem is addressed by its explicit
representation within the model. The reasoning performed
by an agent for the required planning and scheduling
tasks is based on a constraint propagation paradigm.
Schedule quality is enhanced by the introduction of agent
cooperation. A limited-scope Java prototype is developed
and demonstrated using space-based scenarios involving
onboard sensors and a satellite constellation. We are
specifically targeting our effort to enhance the planning
and scheduling capability of NASA’s proposed Remote
Agent architecture.

1 INTRODUCTION

Spacecraft autonomy has the potential for effecting
significant cost savings in mission operations by reducing
the need for dedicated ground staff. In an autonomous
operating mode, operators will commu nicate only high-
level goals and deadlines directly to the spacecraft. The
spacecraft will then perform its own planning and
scheduling, decomposing a goal into a set of sub-goals to

be achieved in cooperation with other spacecraft in the
environment. In this paper, we present this distributed
approach to onboard planning and scheduling that helps
to function a spacecraft as an autonomous agent.

The term ‘planning’ refers to the generation of
activities that satisfy a current set of goals. For example, a
planning process to satisfy the request for an image
generates activities such as rolling the camera to the
correct position, activating the camera shutter, and
transmitting the captured image. The term ‘schedule’ is
an association of these specific activities with particular
times by satisfying constraints: for example, rolling
should be performed before the shutter action. The
onboard spacecraft subsystems must execute these time-
sensitive activities autonomously to achieve the goals. If
none of the subsystems of the spacecraft is capable of
executing an activity then a cooperation from another
spacecraft in the environment is required to get the
activity executed to achieve the overall goal. For
example, if a spacecraft is incapable of taking an infrared
imagery of a certain swath of the planet then it has to seek
cooperation from another spacecraft in the environment
that can do so. In addition to serving these payload-
oriented functions, planning and scheduling are also
necessary to achieve goals generated to ensure safe
spacecraft on-orbit operations. As described in (Pell,
1997), the onboard planner assumes a domain model
containing an explicit representation of spacecraft
subsystems, tasks, goals, and the norms, under which they
operate. These norms are a set of flight rules and
constraints that are represented in a high-level syntax.

Two major trends for task representation in the
history of AI planning have been observed (Georgeff,
1987): goal achievement (GA) and hierarchical task
network (HTN). The origin of GA -based planning is in
STRIPS (Fikes, 1971). In this model of representation, an
initial situation, a set of possible actions, and a goal that is
to be achieved are given. Planning consists of finding a
sequence of actions that would lead from the initial

 2

situation to the final one. Several planners were
subsequently built on the GA model including TWEAK
(Chapman, 1987), and SNLP (McAllester, 1994). On the
other hand, the HTN representation has its origin in
NOAH (Sacerdoti, 1974). A planner based on the HTN
model is presented with a task or activity network, which
might contain several non-primitive tasks. Planning
proceeds by selecting a non-primitive task, decomposing
it into subtasks using a library of available decomposition
methods and then detecting and resolving conflicts with
other tasks. This process is repeated until no non-
primitive tasks remain and all the conflicts have been
resolved. Typical examples of HTN planners are
FORBIN (Dean, 1988), and NONLIN (Tate, 1977). There
are also planners combining features from these two such
as O-Plan (Currie, 1991) and SIPE (Wilkins, 1988).

Given a representation in either GA or HTN, solving
a planning problem can be viewed as a straightforward
search problem, that is, find some or all possible
orderings of the actions that would result in achieving the
specified goal, given the rules and constraints of the
environment. In general, the HTN paradigm can lead to
more efficient planners because it allows the user to limit
the search space by guiding the planner towards exploring
only acceptable solutions. A typical implementation of
the search engine of a planner operates on a temporal
database such as the HSTS system (Muscettola, 1994)
and Time Map Manager (Boddy, 1994). The search
engine posts constraints to the database. The temporal
database then constructs a constraint network and
provides a constraint propagation (Le Pape, 1990)
service to verify the global consistency of the posted
constraints with the goals, rules and constraints of the
spacecraft. This global consistency guarantees the
existence of a schedule satisfying the constraints. Both
the consistency checking and search for an optimal
solution in cooperation with other agents in the
environment are computationally intractable, that is, NP-
hard. A distributed approach to planning and scheduling
allows cooperation among agents in the environment and
increases efficiency in the search for an optimal solution
by partitioning the whole search space.

In recent years, there has been a growing interest in
agent-oriented problem solving (CACM, 1994), which
provides the basis of our proposed distributed solution
(Chaib-draa, 1992) to planning and scheduling. The
agent-oriented problem-solving environment increases
efficiency and capability (Rosenschein, 1982) by
employing a set of agents, communicating and co-
operating with each other to achieve their goals, that is, to
find a local solution that satisfies both its hard and soft
constraints. By an agent we mean, an entity which
operates in an environment either autonomously or semi-
autonomously interacting with other agents in the
environment by means of communication. Agents are
sometimes software agent (Genesereth, 1994)
implementing the behavior of humans, machines or
hardware, etc. Agents can also be mechanical or

electronic robots (Simmons, 1991) with the capability of
perceiving or sensing the environment and capable of
executing appropriate actions. Our assumption is that
even if an environment consists of such heterogeneous
agents there will be a well-defined means of
communication between these agents. In other words,
every agent has an interface, which understands a
common communication language.

In our envisioned distributed (or equivalently, multi-
agent) environment (Conry, 1988; Georgeff 1983), a set
of problem solving autonomous agents (an agent is either
an onboard subsystem of a spacecraft or the spacecraft
itself) communicate and co-operate to achieve high-level
goals through planning and scheduling. This distributed
planning and scheduling emphasizes a decentralized
organization, plans are generated and executed co-
operatively and concurrently by the subsystem agents and
spacecraft agents, taking into account system flight rules
and resource constraints. In a centralized planning
environment, goals, rules, constraints, and resources from
individual agents are accumulated at a central place and a
centralized planner is used to generate a global schedule.
An individual agent is then provided its relevant portion
of the schedule of tasks. The agent then informs the
centralized planner the progress on the schedule. This
centralized approach is particularly unsuitable when the
problem is inherently distributed such as in a spacecraft
environment where each subsystem and spacecraft
functions autonomously. A centralized planner is unable
to exploit fully the expertise and knowledge of each
individual agent, and makes the search space
unnecessarily larger. In a distributed environment, in
contrast, each agent (i.e., an onboard subsystem or a
spacecraft) generates and maintains its own plan and
schedule, and therefore the whole search space is divided
into a number of smaller ones to be managed by
individual agents. The overall plan and schedule is
obtained by combining or synchronizing plans from
individual agents, resolving any conflicts that arise from
the constraints on the resources.

In our envisioned distributed environment, an agent’s
model of the environment and tasks is manifested through
a hierarchical knowledge representation language taking
into account spacecraft operational aspects and resource
constraints. The task decentralization problem is solved
by the use of the hierarchical knowledge structures, and
the resource optimization problem is addressed by its
explicit representation within the model. The reasoning
performed by an agent for the required planning and
scheduling tasks is based on a constraint propagation
paradigm. Schedule quality is enhanced by the
introduction of agent cooperation. A limited-scope Java
prototype is developed and demonstrated using scenarios
involving onboard sensors and satellite constellations.

The rest of the paper is organized as follows. First we
describe two space-based scenarios to illustrate the
envisioned operating mode of a spacecraft agent, that is,
to achieve high level goals through distributed planning

 3

and scheduling. Then we present a generic architecture in
section 3 that can be instantiated appropriately to
implement an agent in the environment. The hierarchical
syntax for modeling an agent’s domain knowledge of
tasks is presented in Section 4. Section 5 describes the
protocol for inter-agent communication. Section 6
contains our approach to decentralization and
coordination of tasks among agents. The functionality of
the current Java prototype is described in section 7.
Finally, we summarize our work in section 8 and lay out
our future plan for extending the work.

2 EXAMPLE SCENARIOS
We present two space-based scenarios in this section

to illustrate our envisioned distributed planning and
scheduling. Onboard subsystems of a spacecraft are
considered as agents in the first scenario, whereas
individual spacecraft themselves are agents in the second
scenario.

The first scenario is a modified version of the
‘Spaceworld’ model scenario presented in (Vere, 1983),
where the goals are to send pictures of objects in deep
space from the spacecraft to Earth. In the current New
Millenium Remote Agent (NMRA) architecture (Pell,
1997; Chien, 1997), the executive will pass these goals to
the planning and scheduling component, which
recursively selects and schedules appropriate activities to
achieve the goals. The component also synchronizes
activities and allocates global resources over time such as
power and data storage capacity. Thus, the planning and
scheduling component of NMRA maintains a dynamic
model for each of the subsystems to carry out its task.

Camera Executive

Image Executive

Recorder Transmitter

Set Filter Rol ler Turn offTurn On Shutter

FIG 1: A Multi-Agent View of Intra-Satellite Image

Request Processing Activities
In our envisioned distributed environment, the

executive will delegate the task to an image executive
(illustrated in figure 1), dedicated to managing goals
related to obtaining, recording, and transmitting a picture
to earth. This executive is only a high-level planning and
scheduling agent, and it does not deal with resource
allocation. The executive’s plan can take one of the
following two directions: 1) if the earth is in view (can be
verified with the help of the camera executive) then it will
send a request to the camera executive to take the picture
followed by a request to the transmitter to transmit the
picture; 2) if the earth is not in view then it will send a
request to the camera executive followed by a request to
the recorder to record for a subsequent transmission. The
scheduling part of the image executive consists of

specifying time intervals along with the requests to the
camera executive, recorder and transmitter agent.

Upon receiving a request from the image executive,
the camera executive schedules activities such as filter
setting and turning on and off the camera, by taking into
account its prior commitment of its own resources to
other agents. Additionally, it will contact the roller agent
to roll the spacecraft to position the camera for the
desired picture and requests to maintain that position for a
certain amount of time. A roller agent may just only be a
resource manager. It will meet the request from other
agents on a first-come-first-serve basis, and thus no
serious scheduling activity is involved. If the camera
agent fails to meet the request of the image executive then
it will inform the executive with possible alternative slots
for cooperation. The executive will coordinate with the
camera agent to come up with an agreeable time slot. In a
similar manner, the recorder and the transmitter agents
will perform their own local scheduling and resource
allocation in cooperation with the image executive.

To illustrate further our distributed environment
where agents are individual satellites themselves,
consider the scenario consisting of a constellation of
satellites with different viewing capabilities (infra-red
(IR), visible, or ultra-violet (UV)) orbiting a planet – and
the goal is a full spectrum sweep of a certain swath of the
planet. Traditionally, a human operator in the ground
station would need to lookup to see which satellites with
a given capability will be making a pass over the section
of the planet indicated. Following this, the operator will
need to address each satellite to request and organize the
sweep with all relevant details down to the transmission
of the data back to earth. Ideally, the operator should only
need to transmit a high-level goal similar to “Take a full
spectrum imagery of the area bounded by <latitude and
longitude data> and transmit the picture back in two
days”. An executive level satellite can receive this
command, decompose it, and then negotiate with the
agent community (where each satellite in orbit is part of
the community) to attempt to schedule a plan (as
illustrated in figure 2). From there, each satellite can
respond with information such as “will be passing over
the site in 36 hours, I can generate in IR” or “will not be
passing over the site for another 96 hours, I can not
generate the image.” Certain constraints may come into
play also – UV and visible light sensors are only useful
when that side of the planet is facing the sun. Responses
to this situation may be similar to “will be passing over
the site in 4 hours, but the site is currently on the dark
side of the planet” or “will be passing over in 4 hours
when site is on dark side, but will pass over again in 20
hours when it is local noon.” Of course, there are certain
requests which just cannot be fulfilled, it is the
executive’s job to notice these, come up with the “closest
fit” to the request issued from the human operator and
report back with the closest fit to ask for a go-ahead on
that schedule.

 4

Infrared Satellite

Executive Satellite

Ultra-Violet Satellite Visible Satellite

Infrared Satellite Ultra-Violet Satellite Visible Satellite

FIG 2: A Multi-Agent View of Inter-Satellite Image

Request Processing Activities
When all of the planning has been performed through

the negotiation, the executive satellite can issue the plan
to all image gathering satellites (perhaps via the Tracking
Data Retrieval Satellite System (TDRSS)). The satellites
will receive their plan, and internally they will schedule
their own control (perhaps via an internal agent network
for subsystem control as described in the Spaceworld
scenario) for setting up their imaging systems, recording
the image, and then transmitting it. The satellite will pass
over the section of the planet when the time is right,
record the images, and transmit their image back to
TDRSS. TDRSS will assemble the images when the
whole spectrum has been covered, and transmit that back
to the human controller.

3 AGENT ARCHITECTURE

Our architecture of an agent is essentially
deliberative, i.e., there is an explicit symbolic
representation of the model of the dynamic environment;
agents make decisions via logical reasoning based on
pattern matching and symbolic manipulation. Several
different deliberative agent architectures have been
proposed in the literature and two of them are most
prominent: horizontally layered architecture (Ferguson,
1992) and vertically layered architecture (Muller, 1994).
A layered approach models an agent as consisting of
several hierarchical functional modules representing
different requirements of an agent. Possible layers
incorporate communication, reaction, inference for
planning or scheduling, perception, knowledge
maintenance, etc. Each layer in a horizontally layered
architecture has access to both the perception and the
action components whereas, in a vertical approach, only
one layer has direct interface to the perception and action.

The architecture we have adopted is displayed in
figure 3 and it fits into the vertically layered category.
The three layers are world interface layer, inference layer,
and network management layer. An agent's knowledge
base is also split into three types corresponding to the
three layers.

The world interface layer contains the agent's
facilities for perception, action and communication.
These activities require a detailed knowledge about the
environment. An agent's world model contains
information about the environment, for example,
information about other agents such as their locations and
capabilities. The world interface layer enables an agent to
communicate with other agents in the environment to

perform activities related to planning and scheduling such
as sending and receiving requests, responding to a
request, etc.

Constraint
Management Layer

Inference Layer

Act ion Communication Perception

World Interface Layer

Constraint
Database

Domain
Knowledge

World
Knowledge

FIG 3: Vertically Layered Agent Architecture

Upon receiving a request from another agent through
the world interface layer, the inference layer does
planning or scheduling or resource allocation, depending
on the type of the agent, using the available domain
knowledge. The domain knowledge consists of the
knowledge of the application, for example, description of
different task abstractions and resources, effects of a task
when it is carried out, and so on. Most part of the domain
knowledge is static in nature in the sense that it remains
the same for a particular application.

The job of the network management layer (also
called the temporal database layer) is to manage the
temporal constraint network generated during the
planning and scheduling process by the inference layer.
The constraint database is a persistent store for the
constraint network. The layer provides the consistency
checking service for the inference layer upon receiving a
propagation of constraint from the inference layer.

To illustrate the interactions among the layers, we
provide a small example of resource allocation activity of
the recording agent described in the previous section.
Suppose the maximum recording capacity at any time is
1GB (this is a resource constraint) and 700 MB of it has
been scheduled for the time interval [800, 900]. This
information along with the constraint is appropriately
stored in the constraint database as a temporal network.
The current state of the database is consistent. Now, if a
request for 400MB for the interval [850, 950] arrives
from the image executive, then the world interface layer
will pass this request to the inference layer. The inference
layer posts this request as a constraint to the network
management layer. The network management layer tries
to construct a consistent schedule combining the existing
network with the incoming request. Upon failing, the
layer informs the inference layer, which in turn informs
the requesting agent through the world interface layer.

4 HIERARCHICAL MODELING

As mentioned in the introduction, a planning process
based on a HTN representation first constructs a plan
containing abstract high-level activities and then refines

 5

these components in more detail. This process of
refinement continues until these high-level activities
themselves correspond to the physical actions in the real
world. The advantage of this approach is that the
feasibility of a plan can be studied incrementally. If an
autonomous software agent is implementing the above
refinement process then domain knowledge of the tasks
and their components have to be codified in some
language. We provide here a flavor of how our proposed
HTN representations (similar to (Das, Fox et al., 1997))
look like. The syntactical details and expressiveness of
this language are not important at this stage, as our
objective is mainly to explain the concepts.

A compound task specification has three
components: 1) a set of sub-components which specify
the subtasks and atomic actions from which this
compound task is built; 2) a set of constraints including
constraints on ordering between subtasks; and 3) a set of
effects when the task is carried out successfully. The two
compound task specification for the image executive
(figure 1) in the ‘Spaceworld’ example presented in
section 2 is provided below:

compound-task send-picture-to-earth(Object, Filter)@[S, E]
decomposition: picture-object(Object, Filter)@[t1, t2];

 transmit -picture(Object, Filter)@[t3, t4]
constraints: S = t1; E = t4; t2 =< t3
effect: received-on-earth(picture, Object, Color, S, E).

compound-task send-picture-to-earth(Object, Filter)@[S, E]
decomposition: picture-object(Object, Filter)@[t1, t2];
 record-picture(Object, Filter)@[t3, t4];
 transmit -picture(Object, Filter)@[t5, t6]
constraints: S = t1; E = t6; t2 =< t3; t4 =< t5; t5 – t4 =< 100
effect: received-on-earth(picture, Object, Color, S, E).

The first specification for the compound task send-
picture-to-earth contains two subtasks: picture-object and
transmit-picture. This task will be normally followed by
the image executive, if the earth is in view; otherwise, the
second alternative is pursued. This kind of options
provides non-determinism of the unfolding process in
hierarchical planning. The efficiency of the planner and
the schedule quality depends on which option is chosen.
If either one of these two tasks is carried out successfully
then the earth will receive the picture as its effect.

The expression t2 =< t3 constrains the fact that a
transmission cannot be started before taking the picture
task is finished. Various types of constraints will be
considered and propagated from agents to agents in a
distributed planning process. Hard constraints represent
those objective requirements and procedures that must be
met to ensure a correct solution by an agent. The
constraint just stated is an example of a hard constraint.
On the other hand, soft constraints represent criteria that
can be relaxed and are not essential for achieving a
correct solution. For example, t5 – t4 =< 100 constrains
that the time between the recording and transmitting
should be less that 100. This can always be considered as
a preference. The compound task specification for the
camera executive is specified in a similar manner:

compound-task picture-object(Object, Filter)@[S, E]
decomposition: set-filter(Filter)@[t1, t2];
 roll-camera(Object)@[t3, t4];
 turn-on-camera@[t5, t6];
 shutter-camera(Object)@[t7, t8];
 turn-off-camera@[t9, t10]
constraints: S = t1; E = t10; t2 =< t3; t4 =< t5; t6 =< t7; t8 =< t9
effect: in-camera(picture, Object, Color, S, E).

The compound task specification for the executive
satellite in our satellite constellation scenario (figure 2) is
specified as follows, where an individual satellite is
responsible for transmitting to the earth the image that its
captures:

compound-task full-spectrum-imagery(Object)@[S, E]
decomposition: infra-red(Object)@[t1, t2];
 ultra-violet(Object)@[t3, t4];
 visible(Object)@[t5, t6]
constraints: S <= t1; t2 <= E; S <= t3; t4 <= E; S <= t5; t6 <= E
effect: received-on-earth(image, Object, S, E).

Each primitive task (or atomic action) in the
Spaceworld scenario is specified along with its
precondition and effect. The precondition of a primitive
task must be satisfied before the action can be executed.
The effect is the effect on the environment after the task
has been executed successfully. An example
representation corresponding to the shutter-camera
primitive task is provided below:

primitive -task shutter-camera(Object)@[S, E]
precondition: locked-onto(Object); shutter-speed(Speed);
 camera(on)@[t1, t2]; platform(still)@[t3, t4]
constraint: [S, E] ? [t1, t2];[S, E] ? [t3, t4]; Speed = E - S
effect: in-camera(picture, Object, S, E).

The preconditions for the primitive task shutter-
camera are as follows: the camera is locked onto the
desired object, it is on, and the platform is still. The
constraint [S, E] ? [t1, t2] states that the camera is locked
on at least during the interval [S, E]. Once the action is
performed, the picture of the object for the interval [S, E]
is in the camera. The primitive task specifications
corresponding to the turning on action of the camera is
simpler:

primitive -task turn-on@[S, E]
precondition: camera(off)
constraint: E - S = 30
effect: camera(on).

Our explicit representation and handling with resources
usage is evident in the following example specification
corresponding to the recording action:

primitive -task record-picture(Object, Color)@[S, E]
precondition: in-camera(picture, Object, Color, t1, t2);
 tape-recorder(on)@[t3, t4];

data-mode(im2);
 tape-position(Start -Position);
 tape-empty(Start -Position, End-Position)
constraint: [S, E] ? [t3, t4]; E – S = 48;
 End-Position = Start -Position + 336;
effect: tape-full(Start-Position, End-Posit ion);
recorded(Start-Position, End-Position, picture, Object, Color, t1, t2).

When a picture is recorded on a tape, the recorded portion
of the tape resource becomes unavailable. This kind of
effect on resources can be taken into account during the
unfolding process of a plan construction to improve the
efficiency in search for a solution. If an effect violates the

 6

resource optimization function then this branch in the
search space will not generate a potential solution.

5 DECENTRALIZAION AND COORDINATION

Decentralization or decomposition is the process of
breaking down a problem into a set of subtasks. Since we
have adopted a hierarchical modeling environment, there
will be a natural way of decentralizing a task by an agent.
We illustrate this process by considering the following
specification of the compound task “send-picture-to-
earth” already described in section 4. Suppose the image
executive would like to produce a schedule for a picture.
By looking at the above task decomposition it can decide
to get this job done by the camera executive and the
transmitter. Upon receiving a request from the image
executive, the camera executive will follow the same
decentralization process by using the composite task
specification for picture-object.

When an agent decentralizes a task, it sends several
requests to other agents. Correspondingly, the agent
receives a set of replies according to the requests. It is not
necessary that the agent receive the messages in the order
they were sent. This is due to the fact that some agents are
more efficient and some requests are harder to serve than
others. Thus, every agent requires some amount of
coordination of requests and answers. For example,
messages may be tagged with priorities and an agent
responds according to the priorities.

When the image executive agent sends the top-level
task to its two subordinate agents then it expects two
successful schedules, and their combination is the
schedule of the whole task. It may so happen that one of
the subordinate agents is not able to satisfy the constraint
sent with the request. So the image executive may relax
the constraint (e.g., by extending the interval) for that
agent while imposing a constraint to another agent to
compensate this. This process of relaxation and
imposition of constraints is part of the coordination
process.

In the above example specification, the image
executive can achieve the goal in various ways. For
example, it divides the interval [S, E] into two and asks
two agents to plan in these two intervals so the constraint
is automatically satisfied (Georgeff, 1983). The constraint
need not be sent along with the request and the two agents
can work simultaneously. Alternatively, it can ask the
camera executive to work within the first half of the
interval. If it fails then it can relax this constraint by
stretching the interval. Another alternative approach is to
let each agent cooperate with other agents to resolve any
conflict. If an agent fails to provide a solution to a
request, be it a planning or a resource request, an answer
should provide reasons for failure in the constraint field.

We have argued that task decentralization by an
agent and coordination is natural in a hierarchical
modeling environment, which we have adopted for our
distributed environment.

6 AGENT COMMUNICATION

Coherence, cooperation and conflict resolution can
be improved by carefully designing the amount and type
of communications among agents in the form of messages
(Patil, et al., 1992). The information communicated
should be relevant, timely and complete (Durfee, 1985).
A message in our framework is composed of the
following fields: 1) sender: sender of the message; 2)
receiver: receiver of the message; 3) identifier: This is a
unique identifier generated by the sender of the message;
4) type: a type describing whether a message is either a
request or an answer to a request or an acknowledgement,
etc.; 5) task : a task describes what the message is about,
that is, whether it is planning (p), scheduling (s), resource
allocation (r), or their combinations (p/s/r) or database
related transaction such as insert, delete, update, lock and
unlock; 6) description: in the case of a request this field
describes the task requested, for example, description of a
planning tasks. Similarly, in the case of an answer this
field provides the answer of an earlier request or
informing failure with explanations; 7) constraint: a
constraint along with a request from a sender means that
receiver meets the request by satisfying the constraint.

Following is an example of a p/s/r request message
sent by the image executive agent to the camera executive
agent, and its answer from the camera executive agent:

?m1, ‘image executive’, ‘camera executive’, request, p/s/r,
image(star, color)@[800, 1100], exclude([900, 950]))?
?m1, ‘camera executive’, ‘image executive’, answer, p/s/r,
image(star, color)@[950, 1050]?

The request is for an image of any time in the interval
[800, 1100] subject to the constraint that no image in
[900, 950]. The answer from the camera executive is that
the task will be carried out in [950, 1050].

7 PROTOTYPE IMPLEMENTATION
The software platform used for the prototype

development is Java and we used multicast sockets for
inter-agent communication.

FIG 4: Prototype Implementation of the Spaceworld
Multi-Agent Environment

Figure 4 shows the state prior to the start of scheduling of
the implementation of the Spaceworld multi-agent
environment. Each window is a separate process
representing the agent pointed by a red arrow. All the
agents are separate pieces of software, but we have

 7

written a single unified program to launch the Java
applications in different threads so only one Java virtual
machine needs to be started up. Once all the agents are
started up, they all negotiate with the Registry Agent to
get confirmation that they are allowed to come online,
and they negotiate with each other to allow to report
ready to their executives. A newly registered agent
obtains information about other agents in the environment
from the Registry Agent. As shown in figure 5, the
planning and scheduling process is initiated by pressing
the ‘schedule’ button and a pop-up window will appear
asking for the total time to be permitted (100 units) for
the schedule. Using the hierarchical knowledge structure
for ‘send-picture-to-earth’ specified in section 4, the
executive agent then produces a schedule in cooperation
with other agents.

FIG 5: Schedule Request to the Image Executive Agent
by Specifying the Allowed Time

The schedule produced can be viewed by pressing the
‘plan’ button as shown in figure 6.

FIG 6: Schedule Produced by Image Executive Agent in

Cooperation with Other Agents
Once scheduling has been finished, the actual

execution begins by pressing the ‘go’ button. The Image
Executive agent has the schedule already, so it simply
sends the plan down the tree and each agent executes as
needed and when needed. If a problem occurs
somewhere down the line, then re-planning will be
necessary. Within our Satellite Constellation scenario,
there are many ways a schedule can be produced for a full
spectrum sweep of a certain swath of the planet. Figure 7
is one such schedule produced by the prototype.

FIG 7: A Schedule Produced by the Prototype for a Full
Spectrum Sweep

Our initial strategy was to accept the schedule that is
found first during the search. For example, if the first
satellite UV1 with ultra-violet imaging capability was not
capable of carrying out the required task then the
executive contacts the second satellite UV2 with the same
capability and a schedule is constructed as shown in
figure 8.

FIG 8: Revised Schedule of Figure 7 Using an Alternative
for Ultra-Violet Spectrum

If both UV1 and UV2 are available then ideally the most
optimized schedule among the two from the point of view
of time and onboard resources should be produced. This
kind of resource optimization issue will be addressed
during our follow-on study. A constraint propagation
paradigm usually allows encoding cost functions to
produce the cost associated with each schedule.

8 CONCLUSION
In this paper, we have demonstrated how our

distributed approach to planning and scheduling helps to
achieve high-level goals and thereby enhances spacecraft
autonomy. A hierarchical syntax has been adopted for
representing domain knowledge of tasks by taking into
account spacecraft operational aspects and resource
constraints. The task decentralization problem has been
solved by the use of the hierarchical knowledge
structures. A constraint propagation paradigm has been
employed for the required planning and scheduling tasks
performed by an agent. The resource optimization
problem has been addressed by its explicit representation
within the problem domain. We have shown that a
schedule can be generated (if it exists) and its quality can

 8

be enhanced by the introduction of agent cooperation. A
limited-scope prototype has been developed and
demonstrated to assess overall feasibility.

This phase of the work has been carried out as part of
NASA’s effort on a program to develop and Remote
Agents for flight software development. Various
enhancements of our proposed distributed approach are
planned during our follow-on effort.

Constraint propagation: Our current implementation
of the constraint propagation activity is ad-hoc. For our
follow-on development, we plan to use an off-the-shelf
constraint-based temporal reasoning engine such as
Honeywell’s TMM (Time Map Manager), NASA’s HSTS
problem solving framework, and Prolog II software
system. The advantage with a Prolog II type of
declarative system is that it will allow us to perform high-
level symbolic reasoning required as part of the planning
and scheduling process, thus reducing the burden from
the tedious development process in an imperative
environment such as Java.

Resource optimization: The hierarchical
representation of compound and primitive tasks of the
application domain incorporates information about their
resource consumption, and a database containing up-to-
date resource status will be maintained. Therefore, during
the hierarchical planning process, which unfolds a
compound task into a set of subtasks and resolves task
preconditions using the information in the resource
database, the system can choose an unfolding path that
consumes the least amount of resource. This process
which we plan to implement guarantees an optimized
plan to achieve the goal from the point of view of
resource usage.

Inter-agent communication: We plan to take
advantage of CORBA or KQML or ISP for enhanced
cross-platform communication.

Inter-agent negotiation: Currently, we assume
friendly relationship among agents and therefore no
negotiations occurred between two agents. Although this
is appropriate in an environment where agents represent
onboard subsystems (e.g., the Spaceworld scenario), it
may not be the case in a scenario involving a
constellation of satellites owned by various companies,
agencies, and countries. In the future, we will assume one
of various types of relationships between two agents
including friendly, subservient, and bargain. An agent is
awarded or penalized according to its use of resources.
The existence of bargain type relationship therefore
introduces the possibility of negotiations between two
agents without sacrificing their own interests.

Acknowledgements: This work was performed
under contract NAS5-98120 with NASA’s Goddard
Space Flight Center.

9 REFREENCES
1. Boddy, M. (1994). “Temporal reasoning for planning and

scheduling.” SIGART Bull. 4(3).
2. Burke, P., and Prosser, P. (1991). “A distributed asynchronous

system for predictive and reactive scheduling.” Artificial
Intelligence in Engineering 6: 106-124.

3. CACM (1994). Intelligent Agents - Communicuation of the ACM,
ACM Press.

4. Chaib-draa, B. M., Mandiau, R., and Millot, P. (1992). “Trends in
distributed artificial intelligence.” AI Review 6: 35-66.

5. Chapman, D. (1987). “Planning for Conjunctive Goals.” Artificial
Intelligence 32: 333-378.

6. Chien, S., DeCosta, D., Doyle, R. and Stolorz, P. (1997). Making
and impact: artificial intelligence at the Jet Propulsion Laboratory.
AI Magazine. 18.

7. Conry, S. M., R. and Lesser, V.R. (1988). Multiagent negotiation
in distributed planning. Reading in Distributed Artificial
Intelligence. A. a. G. Bond, L., Morgan Kaufmann: 367-384.

8. Cooper, R. G. (1993). Winning at New Products: Accelerating the
Process from Idea to Launch. New York, Addison Wesley.

9. Currie, K. a. T., A. (1991). “The Open Planning Architecture.”
Artificial Intelligence 52(1).

10. Das, S. K., J. Fox, et al. (1997). Decision Making and Plan
Management By Autonomous Agents: Theory, Implementation,
and Applications. First International Conference on Autonomous
Agents, California.

11. Dean, T., Firby, R. J., and Miller, D. (1988). “Hierarchical
planning involving deadlines, travel time, and resources.”
Computational Intelligence 4: 381-398.

12. Durfee, E. H., Lesser, V.R., and Corkill, D.D. (1985). Increasing
coherence in a distributed problem solving network. 8th
International Joint Conference on Artificial Intelligence.

13. Ferguson, I. A. (1992). Touring Machines: AN Architecture for
Dynamic, Rational. Mobile Agents, Computer Laboratory,
University of Cambridge.

14. Fikes, R. a. N., N. (1971). “STRIPS: A new approach to the
application of theorem proving to problem solving.” Artificial
Intelligence 2: 189-208.

15. Genesereth, M. R., and Ketchpel, S.P. (1994). “Software agents.”
C ACM 37: 48-53.

16. Georgeff, M. (1983). Communication and interaction in multi-
agent planning. AAAI.

17. Georgeff, M. P. (1987). “Planning.” Annual Review in Computer
Science 2: 359-400.

18. Le Pape, C. (1990). Constraint propagation in planning and
scheduling.

19. McAllester, D. a. R., D. (1994). Systematic nonlinear planning.
AAAI-94.

20. Muller, J. P. a. Pischel., M. (1994). Modeling interacting agents in
dynamic environments. 11th European Conference on AI.

21. Muscettola, N. (1994). Integrating planning and scheduling.
Intelligent Scheduling. M. a. Z. Fox, M., Morgan Kaufmann.

22. Patil, R. S., R. E. Fikes, et al. (1992). The DARPA Knowledge
Sharing Effort: Proc. of Knowledge Representation and Reasoning
(KR&R-92).: 777-788.

23. Pell, B., Bernard, D.E., Chien, S.A., Gat, E, Muscettola, N.,
Pandurang Nayak, P., Wagner, M.D., and Williams, B.C. (1997).
An autonomous spacecraft agent prototype. 1st International
Conference on Autonomous Agents.

24. Rosenschein, J. S. (1982). Synchronization of multi-agent plans.
AAAI, pp.115-119.

25. Sacerdoti, E. (1974). “Planning in a hierarchy of abstraction
spaces.” Artificial Intelligence 5.

26. Simmons, R. (1991). “Coordinating planning, perception, and
action for mobile robots.” SIGART Bulletin 2: 156-159.

27. Tate, A. (1977). Generating project networks. 5th Int. Joint Conf.
on Artificial Intelligence.

28. Truszkowski, W., Odubiyi, J., and Ruberton, E. (1995). “An agent
model in a multi-agent system architecture for automating
distributed system.” Proceedings of the 1st ICMAS, pp. 463.

29. Vere, S. A. (1983). “Planning in Time: Windows and Duration for
Activities and Goals.” IEEE Transactions on Pattern Analysis and
Machine Intelligence PAMI-5(No. 3).

30. Wilkins, D. E. (1988). Practical Planning: Extending the Classical
AI Planning Paradigm, Morgan Kaufmann.

